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ABSTRACT OF THE THESIS 

Striking the Balance: Privacy and Spatial Pattern Preservation in 

Masked GPS Data 

by 

Dara E. Seidl 

Master of Science in Geographic Information Science 

San Diego State University, 2014 

 

 Volunteered location and trajectory data are increasingly collected and applied in 

analysis for a variety of academic fields and recreational pursuits. As access to personal 

location data increases, issues of privacy arise as individuals become identifiable and linked 

to other repositories of information. While the quality and precision of data are essential to 

accurate analysis, there is a tradeoff between privacy and access to data. Obfuscation of point 

data is a solution that aims to protect privacy and maximize preservation of spatial pattern. 

This study explores two methods of location obfuscation for volunteered GPS data: grid 

masking and random perturbation. These methods are applied to travel survey GPS data in 

the greater metropolitan regions of Chicago and Atlanta in the first large-scale GPS masking 

study of its kind. 
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CHAPTER 1 

INTRODUCTION 

In this digital age of volunteered geographic information (VGI), sensor data, and 

robust computing power, there is improved access to vast quantities of location data. 

Powerful spatial data visualization tools are freely available online, and a willing public 

liberally shares location data on social media platforms such as Foursquare, Twitter, and 

Facebook. VGI is put to use in disaster response on platforms such as Ushahidi, which allows 

users to plot information on incident locations or sites where help is needed. Location-based 

services (LBS) on smartphones allow consumers to locate nearby products and services, 

often in exchange for their location information. The numerous forms of VGI and their 

precision, often at the point level, provide a rich data source for analyses in social science, 

disease etiology, transportation studies, and market research.  

Of concern in this age of big data is the potential for privacy to be breached through 

the disclosure of location information. Locational privacy, or geoprivacy, is a person’s right 

to protect their identifying location information from disclosure, or to determine how and to 

what extent that information is shared with others (Kwan et al. 2004; Elwood and 

Leszczynski 2011; Kar et al. 2013). Location information is a strong personal identifier, 

particularly if multiple locations are provided for an individual. A study of fifteen months of 

location data for 1.5 million European residents finds that just four location points over 

fifteen hours are required to determine not only residences, but the unique identities of 95% 

of individuals (de Montijoye et al. 2013). In addition, the combination of birth date and zip 

code alone is found to be a unique identifier for 87% of the population (Sweeney 2002). 

Home and work locations can be inferred with ease using geotagged tweets and land use data 

(Li and Goodchild 2013). While the precision of data provided makes it more valuable for 

analysis, a fine degree of precision also increases the risk of revealing identities. Obfuscation, 

or masking, is a solution for mapping that aims to balance between the integrity of the data 

and the preservation of privacy. The goal of this study is to determine which masking 
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techniques and associated distance thresholds are best applied to GPS data across different 

geographies. 

JUSTIFICATION 

Compelling evidence of the importance of locational privacy comes from scenarios in 

which the right has been violated, leading to harm. The U.S. Justice Department estimates 

that in 2009, more than 34,000 adults were victims of stalking using GPS (Baum et al. 2009). 

A website called pleaserobme.com highlights the dangers of posting personal location data 

on social media, underscoring how textual information about event, vacation, and restaurant 

plans can be cross-referenced with Google Maps and Street View to provide burglars with an 

itinerary for crime. While it is possible that robbers used pleaserobme.com to target empty 

houses, documented harassment cases include those from several users whose content was 

posted and cross-referenced on the site. These victims received calls at restaurants and events 

they checked in at with disturbing anonymous messages that they should keep their data 

private (Riordan Seville 2010; Herzog 2010).  This website was used on multiple occasions 

by perpetrators to harass contributors of geotagged content by placing calls to restaurant and 

event staff to reach victims. A teenage girl who died from use of an acne medication was 

identified by media through the linking of a prescription data set with newspaper obituaries 

(Malheiros 2009). In 2012, a Los Angeles man tweeted the incorrect Florida home address he 

thought to belong to George Zimmerman, an address which was later reposted by celebrity 

Spike Lee (Jacobson 2012). The misappropriated home location in reality belonged to an 

elderly couple that felt compelled to relocate following an inundation of hate mail and 

reporters.  

Many of these examples rely on VGI, which can be more difficult to regulate than 

location information coming from authorities (Li and Goodchild 2013). In February 2014, it 

was revealed that the Tinder mobile dating application allowed users to track each other’s 

locations for several months in 2013 (Burns 2014). Tinder provided exact distances from 

other Tinder users, which allowed for triangulation of user distances to obtain the exact 

coordinates of any person on the application. In online crime maps, which are often available 

to the public, comprehensive documentation of sexual assaults can place where rape occurs 

in the home, thereby violating non-disclosure regulations for sex crimes (Monmonier 2003). 
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GPS data are increasingly collected and shared, heightening vulnerability to identification. A 

Seattle company called Placed recruited 125,000 users who agreed to provide GPS data from 

their cell phones in exchange for occasional $5 gift cards (Robison 2014). The term 

cybercasing has emerged in the literature, which refers to the planning of physical attacks 

based on online geotagged data (Friedland and Sommer 2010). Privacy International raised 

concerns about the now-retired Google Latitude, which shared updated location information 

with friends on a continuous basis. The application once made it easy to enable tracking on 

another person’s device, a technology which could have been employed by jealous spouses, 

overbearing employers, or stalkers (Gaudin 2009). 

Despite privacy concerns, VGI and the ability to link to other repositories of 

information based on location have great utility for emergency response, navigation, disaster 

relief, health, and social research purposes (Duckham and Kulik 2007). Of critical 

importance is the balance of the utility of the data for research with the safeguarding of 

confidentiality (Vicente et al. 2011). Overall, the literature on locational privacy for 

participatory GIS leaves a sizeable gap for implementable guidelines and technology 

solutions for locational privacy infringement (Krumm 2007). Obfuscation, or masking, of 

point data by altering accuracy or precision is one means by which sensitive location data can 

be processed and displayed to protect identities. Obfuscation is preferable to aggregation to 

larger polygon boundaries such as census tracts or zip codes because it is better able to 

preserve spatial pattern (Allshouse et al. 2010). Due to the modifiable areal unit problem 

(MAUP), attempting to draw conclusions about a phenomenon operating at a finer level of 

geography than the one being analyzed is an error-prone pursuit. Many spatial phenomena, 

including transportation and disease patterns, cross administrative boundaries and would be 

distorted in aggregation. This study examines the balance between privacy and spatial pattern 

preservation in GPS data sets under the application of two masking methods: grid masking 

and Gaussian noise perturbation.  
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CHAPTER 2 

BACKGROUND 

This chapter provides context for historical and present-day debates on privacy, the 

development of the concept of geoprivacy, and how these concepts are negotiated in the 

landscape of big data. Motivations for volunteered geographic information (VGI) 

contributions are discussed, as well as tradeoffs between privacy and data access. Regulation 

strategies for preserving privacy are reviewed with a particular focus on GIScience-based 

technology solutions. Successful studies in masking and obfuscation for point maps are 

identified along with gaps in the current literature on GPS masking. 

CONCEPTUALIZATION OF PRIVACY 

In 1994, Onsrud et al. introduced one of the capstone overviews of privacy in 

geographic information systems, citing United States legal definitions, including “the right of 

the individual to be let alone” and “the right to one’s personality,” stemming from Supreme 

Court Justices Warren and Brandeis (1890). More recently from the legal realm, Solove 

(2007) posits privacy as a set of “family resemblances” of persons and information, drawing 

from a taxonomy of four categories. These four classifications include information 

collection, information processing, information dissemination, and invasion, the last portion 

of which refers to intrusion into an individual’s life.  From a geography perspective, Goss 

(1995) conceptualizes a privacy infringement as the unnecessary or unjust revelation of 

individual identity through the release of personal records. The specific concept of location 

privacy is referenced in more recent articles regarding GIScience (Zhong et al. 2007; Krumm 

2009; AbdelMalik et al. 2008; Elwood and Leszczynski 2011; Kar et al. 2013) as the right of 

individuals to determine how and the extent to which their location information is shared 

with other parties. Similarly, there is an increasing number of references to the term 

geoprivacy, or the right to prevent the undesired disclosure of personal locations and 

activities (Kwan et al. 2004; Nouwt 2008; Li and Goodchild 2013). Given the applicability of 

this definition to obfuscation, this definition of geoprivacy is employed for this study. 
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EVOLVING PRIVACY CONCERNS IN GIS 

Research from the mid-1990s discusses the emerging threat to privacy from the 

practice of geodemographics and the cross-referencing of data from large databases. Goss 

(1995) describes the challenges to privacy caused by cross-referencing data between public 

and private spheres and the stereotyped characterization of the individual based on 

geographic location. Similarly, Curry (1997) calls for a rethinking of the concept of privacy 

based on the evolution of the digital individual, or the profile created of individuals grounded 

on data matching and marketing through geodemographics. Both Goss (1995) and Curry 

(1997) attribute the dangers of privacy infringement as being aided particularly by GIS, 

which allows the tracking of individuals through new geographic data matching, especially 

with a constant stream of data. 

The GIS and Society debates over privacy (Goss 1995; Curry 1997; Crampton 1995; 

Pickles 1995) invoked a series of articles on the concept of the surveillance society. These 

influential studies include riveting terms such as the “panopticon,” a symbol of total 

surveillance and control (Dobson and Fisher 2007) and “geoslavery,” in which an entity 

monitors and exerts control over the location of an individual (Dobson and Fisher 2003). 

Shilton (2012) echoes that the collection of individual data by authoritative entities has been 

typically labeled surveillance. Today, the bitterness with which privacy violations in GIS had 

been debated has lessened, while privacy concerns are growing in an active research field 

(Goodchild 2011). 

A related theme is the commoditization of location data. Sui (2004) writes that the 

emergence of location-based services (LBS) signifies the commoditization of location. This 

means that location has attained a value and is exchanged for trade. Monmonier (2003) cites 

location-based restaurant-finders and the sale of coordinates of wireless subscribers as 

examples of the commodification of location. Sui (2007) elaborates on this, citing that while 

GIS previously represented media in a primitive stage according to McLuhan’s stages of 

media, LBS has moved GIS to the mature stage of media. This is because LBS primarily 

functions through wireless connections and can be configured to access previous forms of 

media. This process has imbued a sense of an “information commons” and furthered the 

annihilation of space by time with mobile services making distance less important (Harvey 

1990). The development of a capitalist system of exchange for location data may contribute 
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to the exploitation of individual location data in the drive for profit. This poses a particular 

challenge for locational privacy.  

MOTIVATIONS FOR VOLUNTEERING GEOGRAPHIC 

INFORMATION 

Despite the darker concepts of exploitation by data commoditization and the idea that 

a knowledgeable entity could be tracking and targeting them, some individuals are 

contributors of copious amounts of geographic data. Volunteered Geographic Information 

(VGI) may include personal location data, such as geotagged tweets, or the submission of the 

locations of physical entities, such as with OpenStreetMap. A subcomponent of VGI may be 

considered citizen science, which typically refers to the contributions of data volunteers with 

more advanced skills, just as in OpenStreetMap (Goodchild 2007). Another example of this 

is bird watchers who participate in a volunteered Christmas Bird Count. Goodchild (2007) 

indicates that self-promotion, personal satisfaction or self-fulfillment, and connecting with 

friends are key motivations for locational contributions in citizen science. Self-promotion is 

evident as a motivator in a study of fitness-related VGI.  With MapMyRide.com and 

MapMyRun.com, fitness and GIS enthusiasts can create maps of their favorites exercise 

paths and share them with online groups or the public. The functions of the two sites include 

map creation, a “route genius” that suggests new user routes, training plans and tools, as well 

as a social element, encouraging group events and city exploration. Kessler (2011) finds that 

the user motivations of self-promotion and mapping interests hinder the utility of 

MapMyRide.com and others to bicycling communities because community interest does not 

come first. He concludes that there is little proof that such data can be applied for urban road 

planning.  

Still, numerous studies make use of “citizens as sensors” or citizen science to draw 

insights for transportation, health, politics, and other social science research questions. The 

European Union has funded five major projects based on Citizens’ Observatories, in which 

citizens act as sensors and volunteer their location data, often from cell phones and GPS, in 

pursuit of the greater good. One such project is CITI-SENSE, which uses participatory 

sensing of environmental components and air quality to support decisions on environmental 

regulations (CITI-SENSE 2014). Citizens as sensors on social media platforms have also 

been leveraged to predict and respond to immediate emergencies, such as earthquakes 
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(Crooks et al. 2013). Motivations for contributing VGI are likely dependent on the platform, 

the type of information contributed, user skills, and attitudes toward technology. 

TRADEOFFS BETWEEN PRIVACY AND DATA ACCESS 

There is a growing body of literature on the competing values of privacy and data 

access. In a survey of health professionals, AbdelMalik et al. (2008) find that locational 

privacy concerns are overwhelmingly viewed as an impediment to proper health research, 

because data aggregation and barriers to access for fine-level data impede accurate spatial 

analysis. Allhouse et al. (2010) echo that analyses based on aggregated data in health 

research make it difficult to effectively allocate resources. Phenomena that move across 

administrative boundaries, such as disease outbreaks, are not successfully captured due to the 

modifiable areal unit problem (MAUP). In such research, point-level data are requisite. 

Precise location data sharing is also crucial to many popular location-based services, some of 

which could not exist without exact coordinate locations (Vicente et al. 2011). Most of the 

projects described in the previous section, including MapMyRide, CITI-SENSE, and 

geotagged tweets for earthquake response, would be of little use if aggregated to a larger 

geography. 

The disclosure of point-level data, especially in interactive online mapping platforms, 

is potentially objectionable for several reasons. First, past or real-time location data can 

uniquely identify individuals, their homes, and their workplaces, potentially leading to crime 

(Friedland and Sommer 2010). The disclosure of sensitive information, such as disease, can 

make those identified more susceptible to harassment. Kwan et al. (2004) write that releasing 

individual data is unethical due to promises of confidentiality in most studies and hidden 

human subjects who may be impacted by the identification. Some laws are in place, 

especially in health research for protecting individuals. In particular, online crime maps 

showing rape that occurs at a victim’s home would violate non-disclosure laws for sex crimes 

(Monmonier 2003). The Privacy Act of 1974 and the Public Health Service Act of 1946 offer 

some protections of patient confidentiality that would preclude the posting of identifiable 

health information (Hampton et al. 2010). Most regulations in place that would extend to 

geoprivacy are in the realm of health. John Edwards introduced the Locational Privacy 
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Protection Act of 2001 to ban wireless providers from releasing customer location data 

without permission, but it did not pass (Monmonier 2003).  

On the opposite side of privacy protection are the motivations of the public to 

contribute data (discussed in the previous section), the motivations of mediating entities to 

make the data accessible, and the motivations of researchers and hobbyists who want to 

access the data. Sweeney (2002) writes that the survival of the database itself depends on the 

publishing of anonymous data. His argument is that the promise of anonymity is precisely 

what makes data volunteers most likely to contribute. As the volume of available data 

sources increase through citizen science and other forms of VGI, however, the promise of 

anonymity may be difficult to sustain. Shilton (2012) argues that privacy is not an absolute 

right, but relative value, and that in participatory research, privacy must be weighed with 

other values, including accuracy and the greater good. Elwood and Leszczynski (2011) note 

that the aptness of locational privacy as well as its sustainability continue to be publically 

negotiated.  

APPROACHES TO PRIVACY PRESERVATION 

Given these tradeoffs and vulnerabilities, there are three categories of solutions for 

privacy protection: regulation, education, and technology. Regulation could include laws 

similar to the Privacy Act of 1974 or the proposed Locational Privacy Act of 2001, or include 

directives for posting locational data online. Onsrud et al. (1994) maintain that privacy 

guidelines within the GIS community should be established to avoid overreaction by the 

public and secure what has already been invested in geographic data collection. Friedland 

and Sommer (2010) suggest the solutions of further education for users of location-based 

services and enforcing privacy rules for public databases, rather than imposing limitations on 

the contributor side. The National Science Foundation (NSF) is currently funding a project to 

build ethics and privacy into GIS curricula across education levels (Carr 2013).  

On the technology side, the National Research Council (2007) released an influential 

set of guidelines for preserving the privacy of point data, which includes recommendations 

for secure data enclaves with restricted access. Kar et al. (2013) discuss the history of 

regulatory strategies and policy mechanisms to protect privacy, but also highlight the 

technology solutions of anonymity and obfuscation. Anonymity (or pseudonymity) involves 
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the separation of identifying personal information from location data (Kar et al. 2013; 

Krumm 2007). Obfuscation, which is the focus of this study, degrades the quality of spatial 

data in one of three methods, including introducing inaccuracy, increasing imprecision, and 

maintaining vagueness in descriptive terms, such as “far from” (Duckham and Kulik 2007). 

Obfuscation is intended to be applied both in published research reports as well as in online 

volunteered geographic information. 

OBFUSCATION TECHNIQUES 

Several categories of data masking techniques have been tested on both discrete 

location and GPS point data sets. Options for obfuscation include grid masking (Leitner and 

Curtis 2006), affine transformation (Kwan et al. 2004), and random perturbation (Kwan et al. 

2004; Hampton et al. 2010; Gambs et al. 2010). Leitner and Curtis (2006) introduce grid 

masking as an obfuscation measure, which generates inaccuracy by transforming location 

points within grid cells of a given size. The authors conclude that there is a threshold cell size 

for both privacy and masking, above which larger cell sizes cause the unmasked pattern to be 

perceived differently. Affine transformations translate, expand, or contract a point pattern, 

maintaining relative positions (Kwan et al. 2004). Random perturbation involves relocating 

each point in an original data set a random distance in a random direction within a set 

distance threshold (Kwan et al. 2004; Hampton et al. 2010). Perturbation is the most 

frequently cited method of obfuscation for discrete point data, particularly in health research 

(Allshouse et al. 2010; Shi et al. 2009; Kwan et al. 2004; Hampton et al. 2010).  

Preliminary masking work has also been conducted on GPS data. Krumm (2007) tests 

the efficacy of obfuscation in identifying residences in GPS data tracks through the addition 

of Gaussian noise in random perturbation and snapping points to the centroids of grid cells. 

Krumm calls for future work to elaborate assessment of obfuscation techniques with stronger 

algorithms to detect home locations in GPS data. Gambs et al. (2010) discuss a system 

designed for privacy preservation in GPS data sets that includes measures for perturbation. In 

this system, the user must set a distance threshold for perturbation. Neither study makes 

recommendations for masking thresholds to be implemented for GPS trajectories. 
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GAPS IN OBFUSCATION RESEARCH 

Overall, the literature on locational privacy in participatory GIS leaves a sizeable gap 

for implementable guidelines and technology solutions to privacy infringement. Krumm 

(2007) and Leitner and Curtis (2006) recommend that future scientific inquiry examine 

privacy protection mechanisms for volunteered or participatory spatial data. Shilton (2012) 

specifically calls for geographic privacy researchers to design and test privacy-aware 

participatory systems and the sensitivity of different forms of participatory data to privacy 

infringement. Kwan et al. (2004) and Hampton et al. (2010) note that aggregation of point 

data is currently the benchmark for privacy protection, but with better documentation of point 

obfuscation techniques and results, masking can bridge the divide between privacy 

preservation and accuracy of analysis. Some research has been conducted on random 

perturbation and grid masking distance thresholds for discrete point data (Kwan et al. 2004; 

Leitner and Curtis 2006; Curtis et al. 2011). These findings are discussed in detail in the 

methods section. No conclusions have yet been drawn on distance thresholds for masking 

GPS data.  

Another gap in the literature relates to how underlying geography impacts the success 

of masking for privacy preservation. Kwan et al. (2004) and Allshouse et al. (2010) 

implement adaptive obfuscation distance thresholds that are weighted by population and 

housing density. The Kwan et al. (2004) study, however, does not measure privacy 

preservation once the mask is implemented. Furthermore, the Kwan et al. study finds that the 

obfuscation measures that are not weighted by population density yield better results, noting 

that different configurations can lead to different results. None of the GPS obfuscation 

studies have tested the success of obfuscation with regard to privacy preservation as a 

function of underlying population or road density. 
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CHAPTER 3 

CONCEPTUALIZATION 

 As a response to the gaps in obfuscation research for GPS data and in 

acknowledgement of the tradeoffs between data quality and participant protection, the 

purpose of this study is to test the preservation of both privacy and spatial pattern in masked 

GPS trajectory data. The guiding research questions for this study are: 

1. How effective are two obfuscation methods, a) grid masking and b) random 

perturbation, in protecting privacy and spatial patterns in trajectory data? 

2. How does privacy preservation in trajectory masking vary by housing unit density, 

road density, and mode of travel? 

This study examines two methods of location obfuscation, which are a) grid masking and b) 

random perturbation. Both types of masking are implemented in the greater metropolitan 

regions of Chicago and Atlanta with distance thresholds of 30 meters, 100 meters, and 250 

meters. Spatial pattern preservation is measured using kernel density estimation on the 

original and masked data sets and calculating the Pearson’s correlation coefficient for each 

permutation. The privacy metric is calculated using concepts of k-anonymity of both home 

location and route. Home k-anonymity is determined by the occupied housing unit density 

where the masked point is placed. Route k-anonymity is determined via colocation 

percentage with other persons in the database. These techniques are discussed in detail in 

Chapter 4.  

HYPOTHESES 

 The first hypothesis for this study is that the higher the distance threshold 

implemented for both grid masking and random perturbation, the greater the privacy 

protection offered by k-anonymity for both home locations and routes. An individual in a 

given data set is “k-anonymous” when he or she cannot be distinguished from at least k-1 

other individuals (Sweeney 2002; Krumm 2007; Zhong et al. 2007). Particularly in regions 

with low household density, a higher magnitude of point location displacement through 

masking would be beneficial in moving a home location away from the original sparsely 

populated region. The higher distance threshold is also beneficial for the anonymity of the 
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GPS trip as a unit, since while the general travel pattern is preserved, it becomes more 

difficult to decipher which road a person travelled on. This is particularly true in regions of 

high road density. At least two previous studies (Kwan et al. 2004; Allshouse et al. 2010) 

implement weighted masking based on population density and household density, increasing 

the magnitude of perturbation as the population density decreased. While their studies build 

k-anonymity into the obfuscation design, this study assesses the outcome of the masking 

thresholds in terms of k-anonymity. 

The second principal hypothesis is that as the distance threshold increases in masking, 

pattern preservation and accuracy will decline across the overall GPS data in the study 

regions. This expectation is well-supported in previous studies of masking residence location 

data as well as GPS trajectory data. As the radius for random perturbation in the Kwan et al. 

(2004) study increases, the cross-k function used to compare clustering patterns results in 

lower correlations. Aside from spatial pattern degradation, Gambs et al. (2010) find that the 

average speed of GPS trips calculated with time kept constant and distance altered from data 

perturbed with a standard deviation of 50 meters was 5% higher than for the original 

unmasked GPS data. It would be unexpected to find a comparatively higher coefficient of 

correlation with a higher distance threshold for obfuscation. Such a finding would suggest 

that the sample size is not large enough or that random perturbation was not fully or 

uniformly random. These first two hypotheses are summarized in Figure 1. 

 
Figure 1. Hypotheses for privacy and pattern preservation. 

A third hypothesis is that areas of lower road density will be correlated with GPS 

trips that exhibit a higher degree of k-anonymity. This is because a higher density of roads 

suggests that there are more unique routes an individual can take in that area compared to 

neighbors (Pingley et al. 2009). If a GPS waypoint is recorded in an area with very low road 

density, it is likely that no matter the degree of obfuscation, the point will still be associated 
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with the same roadway. Low densities of road connecting regions of high population are 

likely to reduce route uniqueness, with many participants taking the same route. 

Fourth, the trajectories of different modes of travel are expected to exhibit varying 

levels of route k-anonymity. Non-vehicle traffic, including bicycle and foot traffic, is 

expected to result in greater route uniqueness with waypoints closer to individual homes and 

workplaces. The data sets employed in this study are GPS points from wearable GPS units 

and have recorded trips of multiple travel modes. Since points are collected for every one 

second of travel, a greater concentration of waypoints is found closer together for walking 

trips compared to vehicle trips. Therefore, trips with slower average speeds are more 

uniquely identifiable and attributable to individuals than vehicle traffic along highways.  

STUDY AREA 

The study area selected for this research is comprised of the greater metropolitan 

regions of Chicago and Atlanta. The greater regions Chicago and Atlanta have internally 

varying but comparable population densities and adequate ranges for home density and road 

density analysis. The advantage of employing broader metropolitan regions rather than strict 

city boundaries for this study is the opportunity to compare results across varying levels of 

urban and rural composition and household density. As Metropolitan Planning Organizations, 

the Chicago Metropolitan Agency for Planning (CMAP) and the Atlanta Regional 

Commission (ARC) conduct large-scale travel behavior studies across their regions to model 

and analyze travel data for planning purposes. GPS data loggers are increasingly deployed in 

travel activity surveys to supplement and replace traditional travel diary collection methods 

(Wolf et al. 2001). The 2007 CMAP Travel Tracker Survey and the 2011 ARC Household 

and Activity Travel Survey both incorporated GPS data logger technology to collect 

everyday travel information from residents in the regions. 

Chicago 

The city of Chicago is the third largest in the United States, with 2.7 million residents, 

and the population of the Chicago metropolitan area is close to 10 million (Census Bureau 

2012). This speaks to the importance of this region for representation in volunteered 

geographic information and social media. The Chicago study area in the 2007 CMAP travel 

survey encompasses eight counties in Illinois, as shown in Figure 2 (NuStats 2008). The 
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mean population density of this region is 5,423 persons per square mile with a standard 

deviation of 1,550. CMAP’s GPS travel survey included both vehicle GPS loggers and 

wearable loggers that were intended to capture all modes of travel. The wearable GPS study 

was conducted between September 2007 and January 2008, resulting in 209 participants 

travelling during 7-day study periods.  

 

Figure 2. CMAP GPS travel survey area. 

Atlanta 

Atlanta has a much smaller city population at approximately 400,000 inhabitants, but 

the metropolitan region has over 5 million residents (Census Bureau 2012). The extent of the 

2011 ARC travel survey is shown in Figure 3 and includes twenty counties in Georgia (PTV 

NuStats 2011). These counties are considered to be the commute-shed for the city of Atlanta. 

The mean population density of this twenty-county region is 826 persons per square mile 

with a standard deviation of 698. The population density is thus much lower than that of the 
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CMAP region. These cities of differing population characteristics and removed from each 

other by approximately 750 miles present a unique opportunity for GPS data privacy 

comparisons. The wearable GPS data logger survey was conducted between March 2011 and 

September 2011 with travel periods of 7 days, just as in the 2007 CMAP study. The wearable 

GPS resulted in data collected from 797 individuals. Recruitment for the wearable GPS study 

was targeted in the four counties of DeKalb, Gwinnett, Cobb, and Fulton.  

 

 

Figure 3. ARC GPS travel survey area. 

GPS DATA ACCESS 

 Access to these GPS data sets is available through the National Renewable Energy 

Laboratory’s (NREL) Transportation Secure Data Center (TSDC) (National Renewable 

Energy Laboratory 2013). The TSDC provides both cleansed summaries of the results of 

various regional travel behavior surveys to the public, as well as spatial data access through a 
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secure remote environment following an application process. This restricted environment 

follows recommendations from the National Research Council’s 2007 report on protecting 

confidentiality in spatial data and does not permit internet access or the addition of or 

copying files externally. Any data or software tools to be added must be reviewed and 

approved by an administrator, and only aggregated report summaries are approved for being 

sent out of the remote environment. The TSDC currently offers spatial travel behavior data 

from the California statewide, Atlanta, Texas, Minneapolis/St. Paul, Chicago, Puget Sound, 

and southern California regional travel surveys. The Chicago and Atlanta data sets are 

currently the only two that provide seven days of GPS data per participant.  

 The TSDC remote access environment stores the GPS data in PostGIS databases, 

which are directly accessible using the open-source software QGIS, available in the remote 

environment. Among the other tools available are R, python, ArcGIS, Spyder, and Microsoft 

Office. Due to limited availability of licenses for ArcGIS, as this environment is shared with 

other NREL employees, QGIS was used for all GIS analysis in this study. Since an ultimate 

goal of this study is to make obfuscation techniques readily deployable and implementable 

across a range of users and geographies, full reliance on open-source tools is advantageous. It 

is important to note that the storage of GPS data points is challenging due to large file sizes 

and limited space. Successfully completing this study entirely in the remote access 

environment meant that intermediate results had to be continually deleted to free up space. 

Overall, the TSDC user environment was fast, responsive, and provided an adequate number 

of tools for this analysis. 
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CHAPTER 4 

METHODS 

This section describes the methodology employed in masking the GPS data, 

determining levels of privacy preservation, and evaluating the maintenance of spatial patterns 

between the original and masked data sets. The obfuscation techniques employed in this 

study are grid masking and random perturbation. Privacy preservation is evaluated by 

adherence to the principle of k-anonymity, or the principle that each feature or route must be 

indistinguishable from that of k-1 other individuals. The preservation of spatial pattern is 

determined by Pearson’s correlation coefficient run on kernel density estimations for the 

original and masked data sets.  

OBFUSCATION 

     The GPS trajectories in this study are masked by one of two methods: grid masking 

and random perturbation. The goal of obfuscation is to strike a balance between data quality 

and privacy preservation. This subsection provides context on other masking studies and 

distance thresholds selected, informing the choice of obfuscation methods for this study. 

Grid Masking 

In grid masking, a grid of a specified cell size is overlaid with the point data to be 

masked, and each point is snapped to or transformed within its corresponding grid cell 

(Leitner and Curtis 2006; Krumm 2007). Snapping can either be to the centroid of the grid 

cell or to a corner point. The cell size of the grid varies according to the degree of privacy 

desired. Larger cell sizes allow for enhanced identity protection, but are more likely to alter 

spatial patterns. Leitner and Curtis (2006) first implemented grid masking on mortality data 

in Baton Rouge, LA, concluding that there is a threshold cell size of 30 meters by 30 meters, 

above which the larger cell size causes the spatial pattern to be perceived differently. Krumm 

(2007) conducts grid masking by snapping GPS waypoints to the nearest point on a 50 meter 

by 50 meter grid. Curtis et al. (2011) implement grid masking with cell sizes of 1,000 meters, 

750 meters, and 500 meters, concluding that compared to control simulations, there is little 

risk with any of these cell sizes for manual identification of the original points. This suggests 
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that cell sizes smaller than 500 meters should be tested for privacy preservation in the interest 

of maintaining spatial patterns for analysis. It is important to note that a constant 500-meter 

threshold can still lead to varying results by settlement pattern, and the results in one city are 

unlikely to reflect those in a small town or rural area. The Curtis et al. (2011) threshold of 

500 meters is considerably larger than the Leitner and Curtis (2006) 30-meter threshold. This 

is because Curtis et al. focus more on preventing identification than on maintaining spatial 

pattern and seek to prove that these masking thresholds are better for privacy than 

aggregation to zip code. Leitner and Curtis, on the other hand, test for preservation of spatial 

pattern to balance with the intended privacy protection. In all of these studies, a blanket 

distance threshold for grid masking is set, regardless of the underlying regional attributes. 

Bernheim Brush et al. (2010) also implement grid masking when testing public 

preferences for the masking of their own trajectory data. The study area is transformed into a 

grid, and only the grid cells that a given trajectory traverses are displayed, rather than 

snapping waypoints to centroids or vertices of the grid. This study does not test any specific 

cell sizes, but rather the preference of users for this masking technique compared to others. 

The cell sizes implemented in this study must not be so large that the trajectories are not 

coherent, and 500 meters is about the size of 9 city blocks. Therefore, the cell sizes tested for 

grid masking in this study are 30 meters, 100 meters, and 250 meters, most closely 

resembling the magnitudes selected by Leitner and Curtis (2007). Trajectory points in this 

study are snapped to the closest vertex of the grid cells.  

Random Perturbation 

          The second method tested for masking the GPS data is random perturbation. In this 

type of obfuscation, each point is moved in a random direction and distance within the 

confines of a distance threshold. Kwan et al. (2004) refer to this as random perturbation, or 

the introduction of random error to each point, varying the magnitude and the direction of the 

location reassignment. The displacement can be thought of as setting a radius for a circle 

with each original point in the data set as the centroids. Each displaced point will fall 

somewhere within that circle. Krumm (2007) introduces the term Gaussian noise for this 

technique, because in his study, the randomization of GPS points follows a Gaussian 

distribution from 0 to σ² in magnitude. The radii Kwan et al. (2004) test in their random 
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perturbation are 98 feet (30 meters), 915 feet (279 meters), and 4,273 feet (1,302 meters), 

which create areas that correspond to block groups and census tracts in their study area. Shi 

et al. (2009) refer to this method as dithering, using the radii of 100 meters, 500 meters, 1000 

meters, and 2000 meters. The results of the Shi et al. (2009) study are that the preservation of 

spatial pattern with these degrees of dithering are highly dependent on the bandwidth used in 

kernel density estimation, which must be equal to or greater than the perturbation threshold. 

Gambs et al. (2010) also implement perturbation with Gaussian noise to mask the mobility 

traces of taxi drivers. Gambs et al. find that with a standard deviation of 50 meters, it is still 

easy to identify the homes of taxi drivers in San Francisco. With a standard deviation of 200 

meters, the quality becomes too degraded to see the home location, but possible to see the 

neighborhood of the taxi drivers. 

An alternative is to mask with the distance threshold weighted by population 

characteristics in the region. Kwan et al. (2004) test masking with distance thresholds 

weighted by the underlying population density, but the results for privacy and spatial pattern 

preservation are no better than for the “blanket” masking thresholds. This is potentially 

related to the weighting factors selected for population density. In this study, the blanket 

masking approach is applied in order to subsequently analyze any differences with respect to 

the original point distribution for housing density. Determining these differences will allow 

for more informed weighting figures to be developed for masking thresholds. 

Another variant of random perturbation is donut masking, which ensures that the 

masked points are moved some minimum distance from the original points (Hampton et al. 

2010). This requires an input parameter as the inner radius for perturbation, along with the 

outer radius. Random perturbation within the confines of the donut would place the masked 

point a random distance and direction from the original point between the minimum and 

maximum radii specified. Hampton et al. (2010) test donut masking with the radii kept 

variable based on the underlying population density at the point. Likewise, Allshouse et al. 

(2010) vary the radii for their donut masking by the number of households and area of the 

block group in which the point is located.   However, in some cases the implementation of an 

inner radius could hamper both privacy and spatial pattern preservation.  First, it limits the 

potential area of displacement by making the ring smaller. Second, allowing for some points 

to randomly remain at their original positions maintains uncertainty in the masked data set 
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and does not limit the mask to only areas where the original point is not located. Therefore, 

this study does not implement an inner radius for donut masking. Rather than favor pattern 

preservation over privacy preservation (Leitner and Curtis 2006) or identity protection over 

preservation of privacy (Curtis et al. 2011), this study selects middle ranges between 30 

meters and under 500 meters hypothesized to balance between these two concerns. 

Furthermore, since GPS data differs in structure than standalone point data, the test 

thresholds are set to lower than those in other studies due to the necessity of a greater degree 

of coherence for proper measure of route collocation and anonymity. Given these 

considerations, the radii implemented here are 30 meters, 100 meters, and 250 meters, 

matching the distance thresholds for the grid masking component of this study. The lower 

threshold of 30 meters is tested in this study because of the high density of settlement 

patterns in the Chicago region. Examples of original unmasked GPS points and their 

obfuscated counterparts with a 100-foot distance threshold are shown in Figure 4. 

 

Figure 4. Example GPS obfuscation results with a 100-foot distance threshold. 
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K-ANONYMITY 

The concept used in this study for evaluating the preservation of privacy between the 

original and masked GPS data sets is k-anonymity. According to Sweeney (2002), who 

introduces the concept, k-anonymity ensures that the data for an individual is 

indistinguishable from k-1 other individuals in a given data set. This concept has been 

increasingly applied in masking studies as a means of both measuring the anonymity 

generated or maintained in masked data sets and generating radii distances for perturbation.  

Hampton et al. (2010) engineer their donut masking study to create masking radii based on 

the concept of spatial k-anonymity, specifying a number of persons between which a health 

or disease cluster cannot be reversely identified to generate the radii for each point. 

Point Anonymity  

Research teams have measured the k-anonymity of persons and households of 

masking studies with varying metrics. Allshouse et al. (2010) measure k-anonymity in their 

donut masking study as the total number of households in the circle formed with the original 

point as the centroid and the radius as the distance to the masked point. A potential issue with 

this measurement is that the public would only be viewing the masked data set, and would 

make assumptions about where the masked point falls. It is important that the masked point 

then have an appropriate underlying household density. Hampton et al. (2010) calculate k-

anonymity by extracting population density values for each point from a raster of population 

density.  

Another option is to base point k-anonymity on the number of households, or 

household density, contained within a buffer of each masked point. This could be determined 

using a GIS layer of residential parcels with a buffer of a set distance from the masked point. 

If there is more than one residential parcel centroid within each masked home buffer, the 

masked point can be said to be indistinguishable from at least one other home. There are 

several issues with this approach, however. First, parcel layers may not include information 

on the type of residential land use. Second, the goal of masking for privacy preservation is 

not limited to the release of spatial data from academic and professional studies; it extends to 

other forms of VGI that would have otherwise been identity-revealing point data, such as 

check-ins at home locations. In order to encourage the widespread application of masking 
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techniques in VGI, all the resources to server as input parameters for masking should be free 

to use and easily accessible. Complete parcel data are often made available only by request 

through municipalities. It can be challenging to ascertain information on the number of 

households residing in each parcel, and the accessibility of these data across the U.S. is 

inadequate at this time. A second issue is that buffers and intersections are computationally 

expensive operations in GIS and are not advisable for the large quantities of point data this 

study evaluates. 

An alternative approach is to use household density or population density as a proxy 

for k-anonymity for home locations. In designing a k-anonymity-weighted masking 

threshold, Allshouse et al. (2010) set the displacement distance as dependent on the number 

of households within  the area of the block group where the household resides. Kwan et al. 

(2004) also assign k-anonymity levels from census block groups to each point in the 

weighted masking. Based on the consistency of this approach across the geography (Kwan et 

al. 2004) and health disciplines (Allshouse et al. 2010), this study opts for the less 

computationally expensive technique of evaluating the privacy preservation of masked points 

from the density of occupied housing units in the block group of the masked home locations. 

In this study we are interested in maintaining the confidentiality of only home locations, 

though we acknowledge that work, school, and other frequented locations may serve as 

identifiers. The same methods applied to home locations here may also be applied to other 

origins and destinations in the GPS data.  

Route Anonymity 

This study also tests the levels of privacy maintained in trajectory data, which each 

trip considered a separate entity. Nergiz et al. (2009) introduce the concept of trajectory k-

anonymity, which means that every trajectory released in a set of data can be tied to at least k 

participants in the database. In this case, k is representative of travelers of routes, rather than 

of routes. Just as for individual locations, which should be attributable to more than one 

person or household, each trajectory should be attributable to at least one other person in the 

data set. The goal in this part of the analysis is to identify collocated travel patterns and group 

trajectories by similarity in geography and time. The literature reveals multiple options for 

clustering similar routes together.  
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Multiple categories of clustering algorithms are available, including partitioning, 

density-based, grid-based, model-based, and hierarchical clustering, as well as clustering 

based on constraints (Braga et al. 2012). Density-based Spatial Clustering of Applications 

with Noise (DBSCAN) is one commonly applied density-based clustering algorithm, which 

discovers spatial clusters of arbitrary shapes and requires the input parameters of a minimum 

number of neighbors for each cluster and a spherical neighborhood threshold (Ester et al. 

1996; Richardson and van Oosterom 2002). Another common density-based clustering 

algorithm is Ordering Points to Identify Clustering Structure (OPTICS), which has been 

successfully implemented in the clustering of trajectories (Braga et al. 2012; Andrienko et al. 

2007). Braga et al. (2012) apply OPTICS to trajectory data, storing core distances and 

reachability distances, in combination with minimum bounding rectangles and the Hausdorff 

distance to group trajectories. The OPTICS thresholds Braga et al. (2012) apply for their 

study area are a distance of 1,000 meters and 3 minimum neighbors. The minimum bounding 

rectangles are established from the most extreme values (i.e. northernmost, westernmost) of 

each trajectory, and each rectangle is compared to those of other trajectories in the data set. 

For where the minimum bounding rectangles overlap, the Hausdorff distance is calculated 

between the trajectories. The Hausdorff distance is used to compare one linear feature to 

another, and has been used elsewhere in applications to assess the positional accuracy of 

digitized polylines (Goodchild and Hunter 1997). A disadvantage of this distance is that it is 

sensitive to outliers.  

A similar clustering procedure comes from Andrienko et al. (2007). In this case, 

OPTICS is implemented to determine points of interest from raw GPS data, and the 

clustering of routes is approached using a “common route” function, in which pairs of 

trajectories are scanned for the closest pair of points. The mean distance between positions 

and a penalty distance are calculated for each pair during scanning. Clustered routes or trips 

in the Andrienko et al. study are created with a distance threshold of 250 meters. A variant of 

this function accepts time as a parameter so that the routes can be clustered spatiotemporally. 

A disadvantage of this procedure is that each point of every GPS trip must be compared to 

every other, which can be computationally intensive. 

Another similarity measure is to determine the longest common subsequence (LCSS) 

for each pair of trajectories (Meratnia and de By 2002; Vlachos et al. 2002). The LCSS is 
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appropriate for trajectory data where there would be outliers and noise, such as with GPS 

data, and a similarity function is run to determine the length of the LCSS. The dynamic 

comparisons of each trajectory pair again make this technique computationally expensive. 

Nergiz et al. (2008) minimize the log cost metric of two trajectories in order to group 

trajectories and determine a group representative from which to determine nearest neighbors 

of trajectory points. Minimum bounding boxes are then formed around each group of 

trajectory points. 

A less computationally expensive method for calculating trajectory k-anonymity is 

preferable given the quantity of iterations necessary for each masking technique and 

threshold. Another solution comes from Meratnia and de By (2002), who demonstrate the use 

of a spline raster representation of trajectories. Meratnia and de By propose the generation of 

five rasters, one defining the number of hits per cell, and the other four referring to the 

number of movements out of each cell in the up, down, right, and left directions. Cell size in 

this aggregation must be carefully selected and is dependent on the maximum speed obtained 

in the GPS trajectory. Meratnia and de By propose that where cell size in meters is λ, 

maximum velocity is υmax, and ρ is the re-sampling rate for the trip from a spline 

representation,  

υmax

ρ
 ≪  

𝜆

√2
   

While Lin and Su (2008) critique this method for its focus on aggregation of routes, 

rather than similarity, our study is focused on finding out which routes fail to obtain 

threshold levels of k-anonymity. Therefore, an extension of this grid-based approach would 

be to calculate dissimilarity of routes based on relative trip length traveled through grid cells 

without k other trajectories. Another extension of this method is to aggregate the trajectories 

spatiotemporally in a specified time interval. This raster method is more efficient than 

clustering techniques that compare each trajectory to each other trajectory. In this case, each 

trajectory is only compared to the reference grid. This method also is less sensitive to 

variations in trajectory length and frequency of data collection within a trip. Trajectory k-

anonymity for our study therefore relies on the raster methodology proposed by Meratnia and 

de By (2002). Kernel density estimation (KDE) is applied to the original and masked points 

to create reference grids of collocation values. The maximum average velocity in the data 



 

 

25 

sets was 105 kilometers per hour, and the sampling rate of each point in the data set is one 

per second. Based on the Meratnia and de By cell size recommendation for these parameters, 

a cell size of 150 meters is chosen for the output kernel density rasters of collocation values. 

These collocation index values are then extracted from each corresponding raster cell to the 

GPS points. The extracted point density values then correspond to each second of travel. This 

process can be disassembled into multiple reference grids for each target time period. The 

average collocation of each trip with other trips for the duration of the trip in question is 

calculated to produce a mean collocation value for the trip. A challenge of this approach is 

that points from the same trip or person can occur in the same grid cell more than once. This 

is particularly true with GPS data collected of various modes of travel. Results will be 

discussed in the context of this limitation. The strong advantage of this approach is that the 

conversion to raster speeds up processing compared to a vector-based method.  

SPATIAL PATTERN PRESERVATION 

While optimizing a masking technique for privacy preservation, there is often a 

decline in consistency of the spatial pattern. Some studies appear to favor the preservation of 

privacy at the expense of the utility of the masked data produced. Leitner and Curtis (2006) 

favor a human-centered approach, asking university students in GIS to evaluate the similarity 

of two subsets of original and masked point data and rank them from very similar to very 

dissimilar. This perspective is useful, since it is often the human brain making decisions from 

viewing perceptible cluster patterns, rather than the use of statistics in all cases. Considering 

the large data sets in this study, a comprehensive human-based evaluation of spatial patterns 

would not be possible.  

Instead, most masking studies test the preservation of spatial pattern using a 

clustering statistic. Kwan et al. (2004) implement the cross-k function, which examines the 

clustering of one point pattern compared to another. The cross-k function provides the 

expected number of points of a certain pattern within a set distance of an arbitrary point of 

another point pattern. The function runs in 100 simulations for 51 distances for each of the 3 

sets of radii Kwan et al. use in their perturbation study. It is unclear why these numbers of 

simulations and distances are chosen for the cross-K function, and it appears that a different 

combination of simulations could be applied. Similarly, Hampton et al. (2010) implement a 
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spatial scan statistic test with a circular scanning window in their donut masking study. The 

researchers tested the sensitivity in their Monte Carlo simulations by dividing the number of 

simulated cluster cases by the number of cluster cases they injected in their test. Wieland et 

al. (2008) also use a spatial scan statistic within SaTScan circular cluster detection software 

and record the p values for each cluster.  

Shi et al. (2009) utilize an approach based on kernel density estimation (KDE). 

Instead of running simulations for cluster analysis, the authors create kernel density surfaces 

of varying bandwidths for the original and masked data points with no distance decay, and 

then calculate Pearson’s correlation coefficient for each of the masked density surfaces from 

the original. Shi et al. (2009) find that when the bandwidth is less than or equal to the 

threshold used in perturbation, the density surface from the masked points is very different 

from that of the original points. When the bandwidth applied in the kernel density estimation 

was five times that of the masking distance threshold, the resulting patterns are found to be 

identical to those of the original points. This speaks more to the applicability of the KDE 

parameters in this research than to the underlying differences in spatial pattern. 

All three of the statistical techniques outlined above rely on discrete point data as an 

input, rather than the linked points of trajectories. Thus, a method that introduces cluster 

simulations would have to mimic trajectory clusters. Eliminating the need for simulated 

clusters and relying on the spatial arrangement of the data is possible, as shown in the Shi et 

al. (2009) study. A density analysis for the GPS trajectory data, such as kernel density 

estimation (KDE), provides general surface trends, and is equally appropriate for GPS 

trajectories and standalone point data. This study therefore also implements KDE, and 

Pearson’s correlation coefficient is used to test for statistical difference between the original 

and masked data sets. Following the guidelines of Shi et al., bandwidths of two times the 

lowest masking threshold distances, or 200 feet, are utilized in the kernel density estimations 

with no distance decay.  
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter highlights the results of grid masking and random perturbation tests 

conducted on GPS data collected in the greater Chicago and Atlanta metropolitan regions. 

Descriptive statistics on the data collected in each region are summarized in Table 1. For 

Chicago, there were 209 total persons for whom GPS data were recorded with a wearable 

device. This resulted in 5,671 total trips within the study area and 856,465 total points of 

verified second-by-second trip location data. The mean population density for the block 

groups in which the Chicago home points reside is 10,500 persons per square mile with a 

median of 6,248 persons per square mile. The mean occupied housing units in these block 

groups is 4,706, and the median is 2,288 occupied housing units per square mile. The average 

size of the Chicago block groups for the unmasked home points is 0.5 square miles.  

In the original Atlanta wearable GPS data results, there were 797 total persons with 

GPS data generating 11,308 total trips. Out of these participants, all trips from 200 randomly 

selected persons were chosen for inclusion in this masking study. This study thus masks 

2,773 total trips in the ARC region. The trip rate per person over seven days of travel is thus 

higher in the Chicago region than in the greater Atlanta region. The total number of 

waypoints comprising these Atlanta trips is 603,318. Thus, despite trips represented in the 

CMAP data set, similar totals of waypoints are examined in both greater metropolitan 

regions. A reason for this is that the average trip taken in the ARC region is longer than the 

average trip taken in the CMAP region. Lower overall population density in the Atlanta 

region is likely linked to necessity to travel farther for work and amenities. The mean 

population density of home points of Atlanta GPS participants is 2,517 persons per square 

mile, much lower than the mean population density of selected homes in the CMAP region. 

The mean density of occupied housing units per square mile is also much lower than in the 

Chicago region at 995 units per square mile. The mean size of the Atlanta block groups is 1.5 

square miles, three times the average size of the Chicago home block groups. The differences 

in population and housing density between the two regions are expected to impact the 

masking results for privacy preservation. 
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Table 1. Summary of GPS data points in the study regions 

Region Persons Trips Total points Mean 

population 

density of 

home points 

Mean 

occupied 

housing unit 

density of 

home points 

CMAP 209 5,671 856,465 10,500 

pers/sq mile 

4,706 

units/sq mile 

ARC* 200 2,773 603,218 2,517 pers/sq 

mile 

995 units/sq 

mile 

* Randomly sampled within wearable GPS participant results 

 

K-ANONYMITY 

 This section reviews the success of the masking techniques in both regions for 

preserving privacy under the metric of k-anonymity, which is affectionately nicknamed 

“safety in numbers.” The preservation of home anonymity is reviewed first, followed by the 

results for route anonymity through collocation with other trajectories in the data set. Home 

k-anonymity is calculated by the comparative occupied housing density of the block groups 

containing the home locations of the GPS data before and after obfuscation. Route k-

anonymity is determined using a density raster of all GPS waypoints in the data sets and 

calculating collocation with other waypoints over the entire length of each trip.  

Point Anonymity 

 The point anonymity of the home locations was measured using the occupied housing 

density of the block groups where the points and masked points reside. Overall, fewer than 

half of home points were moved from one block group to another for each of the masking 

thresholds for both Chicago and Atlanta. Of the 209 homes in the CMAP region, 96 home 

locations (45.9%) remained in the same block group as the original home location for all 

masking techniques and thresholds. Of the 200 homes in the ARC region, 139 home 

locations (69.5%) remained in the same block group as the unmasked home location. The 

higher percentage of homes remaining in the same block group for the Atlanta data is 
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partially explained by the larger average size of the Atlanta region block groups, which is 1.5 

square miles, compared to 0.5 square miles in Chicago.  

 Table 2 depicts the mean occupied housing density for the masked home locations in 

the Chicago region. On average, the occupied housing density of the block groups for all 

masking methods and thresholds is higher than that for the original points. Perturbation as an 

obfuscation method resulted in home points being moved to block groups of higher k-

anonymity than for grid masking. Table 3 illustrates the percentage of home locations 

relocated to new block groups due to obfuscation in the Chicago area. Random perturbation 

resulted in a higher percentage of homes being relocated to different block groups than grid 

masking. This helps to explain the higher average occupied housing density reached for all of 

the random perturbation thresholds in the Chicago region.  

Table 2. Mean occupied housing density for masked home locations, CMAP 

Region Technique 30 meters 100 meters 250 meters 

CMAP Grid 4,951.28 4,747.53 4,516.88 

 Perturbation 5,013.85 5,006.46 5,166.11 

 

Unmasked  4,705.83    

 

Table 3. Percent of home locations relocated to different block group, CMAP 

Region Technique 30 meters 100 meters 250 meters 

CMAP Grid 4.78% 14.35% 26.79% 

 Perturbation 8.13% 14.83% 36.84% 

 

 

Table 4 summarizes the results for mean occupied housing density under obfuscated 

conditions in the Atlanta region. The unmasked mean occupied housing density is 994.9 units 

per square mile, which is a much lower density than for the Chicago region, where it is 

4,705.9 units per square mile. Just as in the Chicago region, as the distance threshold for 

perturbation increases, the k-anonymity of the home points increases. The highest k-

anonymity is at the 250-meter perturbation threshold with an average occupied housing unit 



 

 

30 

density of 1,067.9 units per square mile. The only iteration for the Atlanta region where the 

average k-anonymity decreased was with the 30-meter random perturbation threshold.  

 Similar to Chicago, as the distance thresholds increased for both grid masking and 

random perturbation in the Atlanta region, the percentage of home locations relocated to 

different block groups increased between 5.5% (grid masking, 30 meters) and 19.5% 

(random perturbation , 250 meters). These results are shown in Table 5. The lower 

percentages of block group reassignments compared to the Chicago results is explained by 

the higher average size of the block groups in the Atlanta region. Applying identical distance 

thresholds in masking points results in fewer block group reclassifications for each point in 

the larger block groups compared to those originally in the smaller block groups.  

Table 4. Mean occupied housing density for masked home locations, ARC 

Region Technique 30 meters 100 meters 250 meters 

ARC Grid 1,004.52 1,016.26 1,014.75 

 Perturbation 989.84 1,009.45 1,067.85 

 

Unmasked  994.85    

 

Table 5. Percent of home locations relocated to different block group, ARC 

Region Technique 30 meters 100 meters 250 meters 

ARC Grid 5.50% 11.00% 17.00% 

 Perturbation 7.00% 12.00% 19.50% 

 

 

Overall, k-anonymity for the home points may be better assessed by measuring the 

number of other homes within a radius of each home location. Block groups may be too large 

of administrative areas to measure occupied housing density for these purposes. The average 

size of the Chicago block groups is 0.5 square miles and, the average size of the Atlanta 

block groups is 1.5 square miles. Even with these small areas, housing units are not likely to 

be distributed equally throughout. In these data sets, at least half of all home locations did not 

switch block groups under any of the masking conditions. This suggests that changes in the 
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underlying settlement density were not fully portrayed in the block group characterization. 

Therefore, the weighting scheme used by Kwan et al. (2004) and Allshouse et al. (2010) for 

masking based on block group population density does not fully capture the underlying 

settlement patterns. 

Route Anonymity 

 Route anonymity was determined using the concept of k-anonymity, meaning that 

each route in the GPS data set is indistinguishable from at least k other routes. The 

uniqueness of the route was determined by the proportion of the trip traveled without 

collocation with another point from another route. The collocation index was developed by 

creating a kernel density estimation with a cell size of 150 meters by 150 meters. This is in 

adherence to the cell size selection formula posited by Meratnia and de By (2002) for a 

maximum average velocity of 65 miles per hour. To ensure that only points within the grid 

cells themselves were included in the calculation, a search radius of 150 meters was also 

applied. There are more precise methods of computing collocation described in the methods 

section, but this more efficient method was selected based on the volume of data being 

analyzed and the fact that the application of this standardized measure to all masked data is 

what is generating meaningful statistics. These raster values from the kernel density 

estimation were then extracted to the masked points to calculate the mean collocation of each 

trip by the duration in seconds.  

 The mean collocation index value generated for the original CMAP data set is 115.09. 

With the same index applied to all obfuscation methods with the same cell sizes, the highest 

collocation value achieved was with the 250-meter masking threshold at 133.39. This is 

likely due to more points being snapped to the same grid centroid as the size of the cells 

increased. It was expected that the mean collocation index would also increase between the 

30-meter and 100-meter threshold for grid masking, because the larger distance would snap 

more neighboring points to the centroid of the same grid cell. However, the resulting 

decrease in k-anonymity between these two grid masking distance thresholds is likely due to 

there still being small enough grid cells to expose variation. The 100-meter grid mask would 

still relocate neighboring points to adjacent grid cells rather than the same grid cell. The 

reasons for the decrease in collocation values between the 30-meter and 100-meter grid mask 
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distances are not fully understood and should be explored further.  The decrease in k-

anonymity at this grid masking threshold is consistent across both study areas.  

For random perturbation in the CMAP study area, the results demonstrate a decrease 

in collocation and therefore in k-anonymity as the size of the distance threshold increases. 

This is because perturbation introduces more variation between the points as they are moved 

in random distances and directions. The increase in variation captured at the 50-meter by 50-

meter cell size used in kernel density estimation caused the perturbed points not to appear 

collocated with other routes. A larger kernel density cell size could demonstrate greater rates 

of k-anonymity in the perturbed points.  

Table 6. Mean k-anonymity index by trip, CMAP 

Region Technique 30 meters 100 meters 250 meters 

CMAP Grid 105.42 88.65 133.39 

 Perturbation 110.89 88.89 56.83 

 

Unmasked  115.09    

 

 Table 7 illustrates the mean k-anonymity index by trip in the greater Atlanta region. 

Overall, the collocation or k-anonymity values are lower than for the Chicago region. While 

there are more waypoints considered in Chicago, the lower values in Atlanta still suggest that 

routes are more unique within the Atlanta data set. A similar pattern to the Chicago region is 

encountered between the obfuscation techniques and distance thresholds. As the distance 

threshold of masking increases for both methods, the collocation value decreases, with the 

exception of the 250-meter grid masking results. The 250-meter grid masking collocation 

value is 71.49, higher than any of the other masked results and the original results for k-

anonymity. As the size of the grid cells increased for grid masking, more point neighbors are 

snapped to the same grid cell, giving their associated trips a higher collocation value. For 

both study regions, the 250-meter grid masking threshold is most preferable for maintaining 

route anonymity at the resolution of 150 meters used for creating the route density surface. 

Random perturbation at 250-meter distance threshold is least preferable for route anonymity 

with this measurement. Again, if a larger cell size is used to estimate collocation, the smaller 
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distance thresholds may show better results for protecting privacy with route k-anonymity. A 

larger cell size would group more GPS waypoints together for collocation. 

Table 7. Mean k-anonymity index by trip, ARC 

Region Technique 30 meters 100 meters 250 meters 

ARC Grid 56.67 48.45 71.49 

 Perturbation 56.52 45.56 28.01 

 

Unmasked  58.52    

 

 The other two hypotheses in this study are that areas of lower road density will be 

correlated with GPS trips that exhibit a higher degree of k-anonymity and that the trajectories 

of different modes of travel will exhibit varying levels of route k-anonymity. Lower road 

density lends itself to greater route anonymity because of the limited choice of routes one is 

able to take and the greater probability of collocation with other routes. Generally, as the 

average speed of a trip increases, the anonymity of the route is also expected to rise. This is 

because walking trips of lower speeds are expected to be closer to home locations and thus 

more unique within a data set compared to higher-velocity trips along highways. Highway 

trips are expected to exhibit higher rates of collocation with other trips because limited access 

roads are often included in optimal routes. 

In this study, median trip speed is treated as a proxy for trip mode and is tested for its 

prediction of collocation along with trip duration and road density. An ordinary least squares 

linear regression was run in both study regions to test the effect of median trip speed, trip 

duration, and road density on collocation in original unmasked GPS data sets. Table 8 

demonstrates that overall the model is significant with a p-value of 0.000 and an adjusted R² 

of 0.216. Median trip speed is a significant predictor of collocation for the CMAP data with a 

p-value of 0.000. In contrast to the road density hypothesis for this study, the variable has a 

negative correlation with the collocation index as shown in Table 8. This result is likely 

mediated by the fact that waypoints from the same person falling in the same cell were added 

together in the density calculation. Points from the same person at low speeds are captured in 

the same grid cell and thus appear to have high collocation with other routes and high k-

anonymity. An alternative explanation is that walking trips may fall in inner city business 
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districts, where there is a higher probability of sharing a route with others due to higher 

daytime population density. Further analysis with a more precise collocation measure is 

needed to differentiate between these two patterns. Road density is also a significant 

predictor of route k-anonymity with a positive coefficient of 0.013. This result also runs 

contrary to the hypothesis that lower road density would be associated with higher k-

anonymity. While the coefficient in this regression model is very low, a possible explanation 

is that low road density is correlated with low population density in remote areas. This would 

result in lower representation in the GPS data sets, and thus with greater route uniqueness. 

Trip duration did not reach significance in this model for the prediction of the route 

collocation index value for k-anonymity. An explanation for this is short trips occurred in 

both remote regions around homes as well as in central business districts, and there was thus 

a weak relationship with collocation with other routes. Long trips may have been particularly 

unique as travel far away is less common in daily travel patterns, which the GPS surveys 

intended to measure. On the other hand, longer trip durations may be equally associated with 

highway travel and thus collocated with other routes. These ideas should be explored further 

in addressing why trip duration is insignificant for these k-anonymity values. 

Table 8. Results of a linear regression predicting route collocation index value, CMAP 

Independent variables Beta p-value   

      

Median trip speed -4.435 0.000   

Trip duration 0.002 0.264   

 Road density 0.013 0.000   

    

Model statistics Adjusted R² F-statistic p-value 

  0.216 521.768 0.000 

        

 

 The same linear regression was applied in the greater Atlanta region with similar 

results. Table 9 illustrates that the model is significant with a p-value of 0.000 and an 

adjusted R² of 0.193. All three predictor variables are significant in this regression with the 

same characteristics as for the Chicago region. Median trip speed is negatively correlated 

with route k-anonymity with a coefficient of -1.605. This supports the idea that either trips 
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with low speeds are being erroneously collocated with points from the same trip or that trips 

with lower speeds are taking place along routes with greater foot-traffic and vehicle-traffic. 

Trip duration has a very low coefficient in the Atlanta model, but is positively correlated with 

route k-anonymity. While this weak correlation should not be ignored in giving this result 

undue weight, longer trips may be associated with highways and thus have more shared 

routes with other persons in the data set. Finally, road density is also a weak predictor 

positively correlated with route k-anonymity in the Atlanta data set. Just as for Chicago, this 

could be explained by lower road density exhibited in remote regions where there are fewer 

trips and greater route uniqueness. These tests should ideally be run on GPS point density 

rasters with only one point per person per grid cell to determine underlying relationships and 

remove confounding variables. 

Table 9. Results of a linear regression predicting route collocation index value, ARC 

Independent variables Beta p-value   

      

Median trip speed -1.605 0.000   

Trip duration 0.003 0.002   

 Road density 0.005 0.030   

    

Model statistics Adjusted R² F-statistic p-value 

  0.193 222.478 0.000 

        

 

SPATIAL PATTERN PRESERVATION 

 Spatial pattern in this study is measured by the Pearson correlation coefficient 

between the kernel density estimation (KDE) of the original GPS points and the KDE of the 

masked GPS points. The parameters for the kernel density estimation were a search radius of 

100 meters and a cell size of 50 meters by 50 meters. These parameters were selected 

purposefully to be more restrictive than in other studies. Shi et al. (2009) test kernel density 

spatial pattern preservation with cell sizes the same size or larger than the distance threshold 

applied in random perturbation. The authors conclude that a cell size of five times the 

distance threshold is needed to maintain high correlation between the original and masked 
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spatial patterns. This study instead aims to test correlation when the KDE cell size is 

relatively small and close in size to the distance thresholds. A cell size of 50 meters is within 

this range and commonly used in raster analyses. 

The results of the Pearson’s correlation analysis for both the Chicago and Atlanta 

regions are shown in Table 10. As expected, as the distance threshold of masking increases, 

the correlation coefficient between the original and masked data sets decreases. This result is 

consistent for both study regions and obfuscation methods. The rate of decrease in the 

correlation coefficient as the distance threshold increases is faster for grid masking than for 

random perturbation. The 250-meter threshold for grid masking in CMAP produces a 

coefficient of 0.399, exhibiting a low correlation with the original data set. A reason for this 

is that the average distance a point is moved when snapped to the centroid of a grid cell is 

higher than the average distance a point is moved in random perturbation for this distance 

threshold. Based on this resolution of analysis with 50-meter grid cells, the 250-meter grid 

masking results would not be an acceptable replacement for the original data set, and 

incorrect conclusions would likely be drawn. The 30-meter and 100-meter perturbation 

thresholds exhibit close correlation to the original data set for CMAP with coefficients of 

0.968 and 0.934 respectively. The highest level of correlation with the original data set for 

Chicago is found with the grid masking threshold of 30 meters at 0.985. 

Table 10. Pearson’s correlation coefficients between original and masked KDE 

Region Technique 30 meters 100 meters 250 meters 

CMAP Grid 0.985 0.789 0.399 

 Perturbation 0.968 0.934 0.838 

     

ARC Grid 0.982 0.866 0.442 

 Perturbation 0.984 0.944 0.819 

 

 The Pearson’s results for the Atlanta region are similar to those in the Chicago region. 

At the 250-meter grid masking threshold, the correlation between the original and masked 

data sets is lowest with a coefficient of 0.442. The 30-meter distance thresholds for grid 

masking and random perturbation maintain high degrees of correlation with the original data 

set with coefficients of 0.982 for grid masking and 0.984 for random perturbation. Grid 
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masking has the higher rate of decline for spatial pattern as the distance threshold increases. 

If a 50-meter resolution is needed for analysis of masked GPS data, it is recommended that 

the 30-meter thresholds or the 100-meter threshold for random perturbation be applied.  
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CHAPTER 6 

CONCLUSIONS 

 A successful obfuscation method for volunteered geographic information (VGI) 

should be one that is robust, efficient, and easily implementable for any study area. It should 

balance between preserving identities as much as possible while minimizing disruption of 

spatial pattern. This is the first successful large-scale examination of GPS obfuscation results 

between two greater metropolitan regions. The application of the same masking distance 

thresholds between these regions provides a unique opportunity to compare how well privacy 

is preserved for home locations and routes between different settlement patterns. These 

results are especially valuable due to the large sample size.  

 This study confirms for grid masking and for random perturbation that as the distance 

threshold for obfuscation increases, the correlation between the original and masked spatial 

patterns decreases. In both the Chicago and Atlanta study areas, the correlation at the 250-

meter threshold for grid masking is markedly weaker than any of the other thresholds tested. 

This suggests that for both regions, grid masking thresholds of lower than 250 meters are 

necessary for maintaining spatial patterns if a resolution of 50 meters in cell size is needed 

for analysis. Each of the other thresholds for both masking types reached a correlation 

coefficient of at least 0.8 when rounded.  

 The route k-anonymity results in this study demonstrate that there is a definite trade-

off between spatial pattern and privacy for masked GPS data, particularly at the 250-meter 

grid masking threshold. While these results had the lowest Pearson’s coefficients, making 

them inappropriate for small-scale analysis, they also exhibited the highest degree of route 

anonymity. The 250-meter grid masking GPS points demonstrated considerably higher 

average route collocation values than any other distance threshold and obfuscation technique. 

The lowest route k-anonymity values were recorded at the 250-meter thresholds for random 

perturbation, indicating that levels of route privacy decreased and route uniqueness appeared 

to increase at this random perturbation threshold. The 100-meter distance thresholds for both 

obfuscation techniques exhibited acceptable correlation with the original GPS data, but the 

route collocation values were relatively low.   
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 A limitation of the collocation component of this study is that it does not eliminate 

points from the same person falling within the same grid cell. This especially occurs for 

points recorded during walking trips, as well as points recorded at the origins and 

destinations of trips, where speeds are lower and the distance between waypoints is higher. 

Numerous points in the same grid cell can give the appearance of collocation with other trips 

for route anonymity, but this would be false where origins are unique. This study operates 

under the assumption that all trips have beginning and end points with high collocation 

values due to close proximity to themselves, compared to the middle portions of the trips. 

The focus for collocation of this study is how route uniqueness varies by mode, trip duration, 

and the distance threshold applied in obfuscation. Future studies that examine more closely 

the concept of collocation using density rasters should account for and resample for points 

from the same trip falling more than once in an index grid cell. This study also did not 

separate the collocation measure by time of day or day of week. These temporal 

considerations are important when addressing how unique a route truly is at a given day and 

time.  

 Future studies should focus on quantifying the tradeoffs between the level of privacy 

and cell size. A more quantitative measure of privacy protection is needed. It is clear from 

this study that a simple weighting function, such as the one used by Kwan et al. (2004) for 

perturbation according to population density, is too simplistic for effectively capturing the 

nuances of underlying settlement patterns. There is a need for mathematical models and a 

more sophisticated weighting scheme if settlement density is to be incorporated in 

obfuscation design. A vector of weights based on measures in landscape architecture and 

settlement morphology would be a more powerful tool to address underlying densities and 

balance more effectively between the preservation of privacy and spatial pattern in GPS data. 
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